1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
| import csv import gzip import math import time import torch from torch.nn.utils.rnn import pack_padded_sequence from torch.utils.data import DataLoader, Dataset
HIDDEN_SIZE = 100 BATCH_SIZE = 256 N_LAYER = 2 N_EPOCHS = 100 N_CHARS = 128 USE_GPU = False
class NameDataset(Dataset): def __init__(self, is_train_set=True): filename = '../names_train.csv.gz' if is_train_set else '../names_test.csv.gz' with gzip.open(filename, 'rt') as f: reader = csv.reader(f) rows = list(reader) self.names = [row[0] for row in rows] self.len = len(self.names) self.countries = [row[1] for row in rows] self.country_list = list(sorted(set(self.countries))) self.country_dict = self.getCountryDict() self.country_num = len(self.country_list)
def __getitem__(self, index): return self.names[index], self.country_dict[self.countries[index]]
def __len__(self): return self.len
def getCountryDict(self): country_dict = dict() for idx, country_name in enumerate(self.country_list, 0): country_dict[country_name] = idx return country_dict
def idx2country(self, index): return self.country_list[index]
def getCountriesNum(self): return self.country_num
trainset = NameDataset(is_train_set=True) trainloader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True) testset = NameDataset(is_train_set=False) testloader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=False) N_COUNTRY = trainset.getCountriesNum()
class RNNClassifier(torch.nn.Module): def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True): super(RNNClassifier, self).__init__() self.hidden_size = hidden_size self.n_layers = n_layers self.n_directions = 2 if bidirectional else 1 self.embedding = torch.nn.Embedding(input_size, hidden_size) self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional) self.fc = torch.nn.Linear(hidden_size * self.n_directions, output_size)
def _init_hidden(self, batch_size): hidden = torch.zeros(self.n_layers * self.n_directions, batch_size, self.hidden_size) return create_tensor(hidden)
def forward(self, input, seq_lengths): input = input.t() batch_size = input.size(1) hidden = self._init_hidden(batch_size) embedding = self.embedding(input) gru_input = pack_padded_sequence(embedding, seq_lengths) output, hidden = self.gru(gru_input, hidden) if self.n_directions == 2: hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1) else: hidden_cat = hidden[-1] fc_output = self.fc(hidden_cat) return fc_output
def name2list(name): arr = [ord(c) for c in name] return arr, len(arr)
def create_tensor(tensor): if USE_GPU: device = torch.device("cuda:0") tensor = tensor.to(device) return tensor
def make_tensors(names, countries): sequences_and_lengths = [name2list(name) for name in names] name_sequences = [sl[0] for sl in sequences_and_lengths] seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths]) countries = countries.long() seq_tensor = torch.zeros(len(name_sequences), seq_lengths.max()).long() for idx, (seq, seq_len) in enumerate(zip(name_sequences, seq_lengths), 0): seq_tensor[idx, :seq_len] = torch.LongTensor(seq) seq_lengths, perm_idx = seq_lengths.sort(dim=0, descending=True) seq_tensor = seq_tensor[perm_idx] countries = countries[perm_idx] return create_tensor(seq_tensor), create_tensor(seq_lengths), create_tensor(countries)
def time_since(since): s = time.time() - since m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s)
def trainModel(): total_loss = 0 for i, (names, countries) in enumerate(trainloader, 1): inputs, seq_lengths, target = make_tensors(names, countries) output = classifier(inputs, seq_lengths) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() total_loss += loss.item() if i % 10 == 0: print(f'[{time_since(start)}] Epoch {epoch} ', end='') print(f'[{i * len(inputs)}/{len(trainset)}] ', end='') print(f'loss={total_loss / (i * len(inputs))}') return total_loss
def testModel(): correct = 0 total = len(testset) print("evaluating trained model ...") with torch.no_grad(): for i, (names, countries) in enumerate(testloader, 1): inputs, seq_lengths, target = make_tensors(names, countries) output = classifier(inputs, seq_lengths) pred = output.max(dim=1, keepdim=True)[1] correct += pred.eq(target.view_as(pred)).sum().item() percent = '%.2f' % (100 * correct / total) print(f'Test set: Accuracy {correct}/{total} {percent}%') return correct / total
if __name__ == '__main__': classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER) if USE_GPU: device = torch.device("cuda:0") classifier.to(device)
criterion = torch.nn.CrossEntropyLoss() optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)
start = time.time() print("Training for %d epochs..." % N_EPOCHS) acc_list = [] for epoch in range(1, N_EPOCHS + 1): trainModel() acc = testModel() acc_list.append(acc)
|